« Older Entries

Before ether was a potent painkiller, it was a hit with revellers

painThe marble and granite statue in the Boston Common depicts a physician in medieval clothing holding a cloth next to the face of a man who seems to have passed out. An inscription on the base of the statue reads “To commemorate that the inhaling of ether causes insensibility to pain, first proved to the world at the Mass. General Hospital in Boston, October A.D. 1846.” No names are mentioned.

It was on Oct. 16, 1846, that dentist William Morton ushered in the era of surgical anesthesia by putting printer Gilbert Abbot to sleep with fumes of ether from an inhaler he had devised. Surgeon John Collins Warren then proceeded to remove a tumour from the patient’s neck without any of the usual screaming or thrashing about.

Warren looked up at the doctors who had witnessed the event in the surgical theatre that would become known as the “ether dome” and proclaimed, “Gentlemen, this is no humbug.”

That was in reference to a failed attempt by another dentist, Horace Wells, to demonstrate anesthesia with nitrous oxide, or laughing gas, at the same hospital. In that case, Wells hadn’t waited long enough for the nitrous oxide to take effect and the patient howled in pain as Wells attempted to extract a tooth. He exited in disgrace to the cries of “humbug.”

Although Morton gets credit for the first organized demonstration of ether anesthesia, he certainly was not the first to experiment with the chemical. The sleep-inducing effect of ether was first recorded 300 years earlier, when famed Swiss alchemist, philosopher and physician Paracelsus noted that its vapours would induce a state of unresponsiveness in chickens. Ether does not occur in nature, so where did Paracelsus get it?

In 1540, German physician and botanist Valerius Cordus discovered that heating alcohol with sulphuric acid, then known as oil of vitriol, yielded a new highly flammable substance with a characteristic smell. Vitriol was the archaic name for compounds that today are termed “sulphates.”

Cordus discovered that heating a solution of green vitriol, or iron (II) sulphate, a naturally occurring mineral, yielded “oil of vitriol.” Then in the 17th century, German-Dutch chemist Johann Glauber found that burning sulphur with saltpetre (potassium nitrate) produced sulphuric acid.

Potassium nitrate decomposes to yield the oxygen needed to convert sulphur to sulphur trioxide, which dissolves in water to produce sulphuric acid. In the 19th century, potassium nitrate was replaced by vanadium pentoxide, which acted as a catalyst allowing for easier production of sulphur trioxide. This was the method used to produce the sulphuric acid needed for the synthesis of ether in the 1800s.

Before ether’s triumphant performance in 1846 at Massachusetts General, it had developed a reputation as a recreational substance. Middle-class partygoers and medical students both in Europe and America frolicked under the influence of ether. More curiously, drinking ether was common in Europe and was particularly popular in Ireland, where the Catholic Church promoted abstinence from alcohol and asked people to pledge not to drink alcohol. Drinking ether was a way to get around the pledge. Ether was sold in pubs and shops until the 1890s, when it was classified as a poison.

Dr. Crawford Long had taken part in ether frolics as a medical student at the University of Pennsylvania, and when he took over a rural medical practice in Georgia in 1841, he recalled that ether frolickers sometimes developed bumps and bruises of which they seemed to be oblivious.

Could ether be used to relieve pain, he now wondered? The answer came when he delivered his wife’s second baby with the aid of ether anesthesia. Long went on to perform a painless dental extraction, and in 1842 used an ether-soaked towel to put James Venable to sleep before proceeding to excise two tumours from his neck. But Long was not an academic, was not interested in publishing, nor did he crave fame or fortune.

It was two years after William Morton’s celebrated demonstration that Long documented his efforts in the Southern Medical and Surgical Journal in a paper titled “An account of the first use of Sulphuric Ether by Inhalation as an Anaesthetic in Surgical Operations.”

He described a number of cases, including the amputation of two fingers of a boy who was etherized during one procedure and not the other. Long reported that the patient suffered terribly without ether but was insensible with it. The reason he had waited to publish, he said, was the need to overcome criticism by local colleagues, who had suggested that the ether effect was just an example of mesmerism, which at the time was promoted as a pain-reduction method.

With his publication, Long added his name to the list of people claiming to have been the inventors of ether anesthesia. There was William Morton, of course, and Charles Jackson, a physician who had given up medicine to establish a private laboratory for analytical chemistry, where he also taught students, including Morton, who had come to expand his scientific knowledge.

Jackson claimed that he had introduced Morton to ether anesthesia, and the two got involved in a rancorous battle for years. There was also a Berkshire Medical College student, William E. Clarke, who claimed he had first used ether to put patients to sleep.

It was because of the controversy that the Boston monument does not bear the name of any of the claimants. But it does bear a biblical quote from Isaiah: “This also cometh forth from the Lord of Hosts which is wonderful and excellent in working,” addressing the worry people had that relief of pain was somehow interfering with God’s will.

The quote suggests that medical intervention is itself a gift from God and is backed up by a relief on the statue depicting a woman who represents Science Triumphant sitting atop a throne of test tubes, burners and distillers, with a Madonna and Child looking on with approval. There is also a Civil War scene on the side of the monument with a Union field surgeon standing ready to amputate a wounded soldier’s leg. The soldier sleeps peacefully. Thanks to ether, he would feel no pain.

 

Read more

Bending Spoons and Bending Minds

spoon bendEveryone has skeletons in their closet. There’s at least one in mine. A couple of years ago while on a cruise I pinched a spoon from the dining room. It wasn’t because of any lack of spoons at home, it was because no matter how hard I tried I could not bend this one. I tried with two hands, I tried by pushing against the table, I even tried placing the handle under my heel and tugging on the head. No give at all. I had to have that spoon!

I’ve been practicing magic as a hobby ever since I was a teenager. It has turned out to be a perfect fit with my career because of the numerous scientific principles involved in creating the illusion of contravening the laws of nature. And that is what magic is all about. Seeing someone levitate, or vanish inside a cabinet, or appear out of thin air, requires an apparent suspension of the laws of nature. The key word of course is “apparent,” because all such effects are accomplished by clever scientific means. A magician, however, attempts to ensure that the audience will not discover those means. Science can also appear magical, but in this case, we relish in scuttling the magic with down to earth explanations. Just think about it. Isn’t an airplane with hundreds of people aboard flying through the air magical? How about taking pictures with your smart phone and sending them around the world in seconds? Or a seed growing into a plant or a new life being created from the meeting of cells? But magic is converted into science with an appropriate explanation.

I have found performing magic to be an excellent springboard for a discussion of scientific methodology and for fostering the critical thinking needed to prevent being swept away by the tsunami of pseudoscience generated by a rapidly multiplying bevy of charlatans. When you can demonstrate how “psychic surgery,” a procedure by which diseased tissues are apparently removed without an incision, can actually be accomplished by sleight of hand, you have given believers something to think about. Similarly, a demonstration of “mental” effects with a clear declaration that these are done by clever chicanery can help convince at least some that trickery may be involved when psychics perform seemingly scientifically inexplicable feats.

One such feat is “psychokinesis,” or the ability to move objects using only the power of the mind. Psychokinetic effects were first popularized in the middle of the nineteenth century when Angelique Cottin in France claimed that electric emanations from her body allowed her to move objects without touching them. She convinced many observers of her power, but critics offered quite down to earth explanations about how such effects could be performed by natural means. Since that time numerous psychics have claimed psychokinetic powers, with Uri Geller being perhaps the most famous. In the 1970s he beguiled audiences and even some scientists with his apparent ability to bend metal with the power of his mind. He gets credit for introducing the phenomenon of mental spoon bending, an effect upon which he built quite a spectacular career.

Magicians were also astounded. Not by the effect, which can be accomplished by a number of established methods, but by how the public was so ready to swallow a “paranormal” explanation. Conjurers were quick to reproduce the spoon bending trick, pointing out that the only requirement was a modicum of sleight of hand. This brings us back to my pilfered spoon.

When I do the spoon bending trick, I first hand out the spoon to the audience with a challenge to bend it. Once it is established that it can withstand all efforts, I proceed to bend it “with the power of my mind.” But in rare cases, some strong men have managed to bend the spoon and destroy my performance, so I’m always on the lookout for super-strong spoons. I can tell you that Crystal Cruises have such. They absolutely cannot be bent, except in the hands of a magician who is equipped with a “special something.”

But why am I talking about tormenting cutlery? Because last week, thanks to colleague Tim Caulfield, a health law professor at the University of Alberta, I learned that “Integrative Pediatric Medicine Rounds” at his University were set to feature a talk on “Spoon Bending and the Power of the Mind.” The seminar would be given by an “energy healer” who has been described as being “a Reiki Master teacher, a certified Trilotherapy practitioner, a Yuen Method practitioner and a teacher of popular Spoon Bending and Tantric Sex workshops.” So this was not to be a workshop on critical thinking, which could have been appropriate. The prospective speaker actually claimed that 75% of attendees would be able to bend spoons with their mental energy!

The scientific community reacted with vigour to this assault on reason, and the resulting extensive media coverage caused the seminar to be cancelled with some weasel explanations being provided about the workshop “being withdrawn by the presenters.”

The “presenter” was to be Anastasia Kutt, who is not some wacky outsider, but is listed in the University’s Directory as “a research assistant in the “Complementary and Alternative Research and Education (CARE) Program” and is also involved in research activities and organizing events.” What sort of events? Given her interest in topics such as Tantric Sex and spoon bending one wonders.

Criticism of this spoon bending fiasco should not be construed as an attempt by the mainstream scientific community to curb free speech or to police academic research. Rather it is an appeal for reason and for vigilance against quackery sneaking into “integrative medicine” programs which are becoming increasingly popular.

I don’t know how Ms. Kutt bends spoons, but I’d be willing to fly to Edmonton at my expense to find out. If she can bend my Crystal Cruise spoon I’ll eat a University of Alberta Integrative Health Program hat.

Read more

Critter Cuisine

entomophagyWe hear a lot about food these days. Whether it is about healthy choices, food security and feeding the planet, environmental impacts of food production or the science of GMO biotechnologies, hardly a day goes by without food appearing in our headlines.

Curiously, the most readily available source of low-fat animal protein found just about anywhere in the world (outside of Antarctica) is largely ignored by most food cultures. It might be time we start talking about eating insects, or entomophagy.

Putting our icky aversions aside for a moment, there are many good reasons to consider eating insects. Apart from their widespread availability in the wild, they can easily be raised indoors, with a fraction of the footprint (both in terms of land use and carbon emissions) of domestic livestock such as cattle or pork. Also, insect is a lean meat, with up to three times the protein content and with a fraction of the fat, with crickets compared to beef for example. Also, it is a versatile food, which can be eaten raw, cooked or processed, such as being dried and ground into a flour for baking.

Entomophagy is not new or strange to many people around the world, to be sure. One can easily find bulk crickets or woodworms in the markets of Singapore, or termites and grubs in the Ghanaian markets in Accra. Eating insects is also commonplace in cuisines from Brazil, Australia, Japan, China and more. So why is it that entomophagy still carries a taboo in Canadian/American cultures?

The answer may be partly psychological in nature, partly economic and the two are surprisingly linked. Clearly, our western culture carries with it a strongly ingrained entomophobia, or fear of insects, and we don’t tolerate them in our homes, on our lawns, in our crops or even in our thoughts. There is such a widespread phobia of creepy crawlies of any kind that billions of dollars are spent annually on the propaganda of their evil ways and on chemical pesticide solutions to their eradication from every corner of our lives.

This fanatical intolerance of insects was very deliberately fostered and nurtured by post-WWII chemical pesticide companies looking to promote the magical properties of their pesticides (like DDT) and bolstered by an imaginative TV and film media industry that created blockbuster entertainment about killer cockroaches, an attack of the giant ants or tales of mutant wasps that attack human brains via the ear canal. Ouch, scary stuff!

The net effect of this anti-insect campaign has been one in which most of us would rather squish a bug than pop it into our mouths. I am confident, however, that because this is a learned behaviour, it can be unlearned… or better yet, prevented in the first place by reaching out to children and teaching them about the joy and wonders of our critter cousins, before it is stamped out of them by society. Children are naturally curious about all aspects of nature and are particularly intrigued by bugs.

A few weeks ago, I was invited by the teachers at my 3-year old son’s Montessori school to give an insect-related show-and-tell. I managed to borrow several specimen of Stick Insects and Madagascar Cockroaches to bring in for the kids and I was thrilled to see the glee and eagerness from every child who wanted to touch and hold and play with these exotic insects. I kept thinking that the response would have been very different from an adult audience. What a shame it is that this joy of nature is bred out of us as a whole eventually.

Around 15 years ago, back when I was a keen Graduate student in an entomology lab at Laval University in Quebec City, I visited the Insectarium in Montreal for an insect-tasting event. In the foyer of the museum, a dozen chefs were set up behind linen-clothed tables and were preparing gastronomic cuisine of one kind or another, all of which involved insect ingredients. I eagerly ate a multi-course meal consisting in part of ginger-glazed scorpions, garlic-fried crickets, beetle flour cookies and angel-food cake garnished with zesty ants.

At some point during my entomological smorgasbord I noticed that I was being observed by a cautious and curious 8-year old boy, who seemed to take delight in the sight of a grown-up (sort-of) hungrily gobbling down some fried crickets, when I offered him a little taste. The boy reached out his hand to try one when he was noticed by his mother, who was standing just a few feet away.

In the blink of an eye, the poor boy was yanked by the arm, with a shriek from his mother, so brusquely that you could almost hear the socket pop! I mistakenly thought that they were here for an insect-tasting event…. apparently not.

Unfortunately, the boy was so traumatized by his mother’s reaction that it is most likely that his interest in insects was cut short on that very day, one in which a trip to the insectarium could have otherwise promoted a long-term fascination. Too often, our developed entomophobia is inherited directly from our parents, passed down from generation to generation.

We’ve got a long way to go as a society before we are collectively comfortable with all that insects may have to offer us in our lives and maybe even more to consider eating them as regular food.

So whether our conversation about food is related to the challenges of feeding 8 billion+ humans with a smaller ecological footprint or simply to explore the diversity of foodstuffs from the almost 1 million species of insects that exist, we need to start by shifting the flavour of the conversation first, from entomophobia to entomophagy.

Obviously, if we are to have any kind of positive conversation about bugs at all, we need to start with the children and to build pro-actively towards a society that can work with insects and not just against them. Maybe there would be a place for a new “Dickie Dee”-style street vending delivery cart for insect foods…. I can see it now: “Doc Brown’s Bugs ‘n Bites” will be the next food craze coming to a neighbourhood near you. Listen for the chimes as they come around the corner, playing something by The Beatles, of course.

Dr. Adam Oliver Brown

Here is a link to my Facebook page, where you can see some pics and videos of the insect visit with the school children: https://www.facebook.com/DrAdamOliverBrown/

Read more

The Right Chemistry: The thermite reaction can be used in tools or weapons

 

Screen Shot 2016-05-22 at 7.21.44 PM The place was Edinburgh, Scotland. The occasion, the Edinburgh Science Festival. There were a number of captivating presentations, but my biggest thrill came from looking out the hotel window. A light rail track was being constructed just outside and the workers were busy welding. My eyes popped when I saw what they were doing. I was looking at a live thermite reaction! I had talked about this reaction in class on numerous occasions and marvelled on it in videos, but had always deemed it too dangerous to perform.

 

A chemical reaction that produces heat is said to be “exothermic.” The most common example would be the combustion of a fuel. Light a candle and you can feel the heat that is produced. The hottest part of a flame, where the colour is a light blue, can reach a temperature of about 1400 degrees Celsius. But that is a low temperature compared to the 2500 degrees produced by the “thermite” reaction between aluminum and iron oxide. Essentially, this reaction involves the transfer of oxygen from the iron oxide to aluminum to yield aluminum oxide and metallic iron. At this high temperature, the iron is in its molten form and sets fire to any combustible material in its path, making the thermite reaction ideal for use not only in welding, but also in incendiary bombs and grenades.

Back in 1893, German chemist Hans Goldschmidt was looking for a way to produce pure metals from their ores. The classic method for extracting iron relies on heating iron oxide ore with carbon. The carbon is converted to carbon dioxide as it strips oxygen from the iron, leaving behind metallic iron. Some unreacted carbon, however, tends to contaminate the iron. Goldschmidt was looking for a way to produce iron without the use of carbon and hit upon the reaction of iron oxide with aluminum. He was impressed by the remarkable amount of heat produced and suggested that the reaction he had discovered could be used for welding. In 1899, the thermite reaction was put to a commercial use for the first time, welding tram tracks in the city of Essen.

It didn’t take long for the military to realize the potential of this extreme exothermic reaction in warfare. In 1915, the Germans terrorized England by using Zeppelins to drop incendiary bombs based on the thermite reaction. By the Second World War, the battle was on not only between Allied and German armed forces, but also between their scientists and engineers who sought to produce more effective incendiary devices. The Germans came up with the “Elektron” bomb, named after Elektron, an alloy composed of 86 per cent magnesium, 13 per cent aluminum and 1 per cent copper that was used for the casing of the bomb.

This alloy burns with a very hot flame, but requires a high temperature for ignition. The thermite reaction was up to the task. When an Elektron bomb hit the ground, a small percussion charge of gunpowder ignited a priming mixture of finely powdered magnesium and barium peroxide. This reaction produced the heat needed to ignite the thermite mix of aluminum and iron oxide, which in turn ignited the highly combustible casing. The Allies developed similar types of bombs resulting in the most destructive air raid in history, which was not Hiroshima or Nagasaki, but the firebomb raid on Tokyo in March 1945. An Allied bombing of Dresden the same year with incendiary bombs virtually destroyed the whole city. During the Second World War, the Allies dropped some 30 million 4-pound thermite bombs on Germany and another 10 million on Japan.

Thermite hand grenades were also used during the war to disable artillery pieces without the need for an explosive charge, very useful when silence was necessary to an operation. This involved inserting a thermite grenade into the breech of a weapon and then quickly closing it. The great heat produced by the thermite reaction welded the breech shut and made loading the weapon impossible. Alternatively, a thermite grenade was discharged inside the barrel of an artillery piece making it useless.


During the Vietnam war, thermite grenades found a different use. From the start of hostilities, putting a crimp into the enemy’s food supply was part of the U.S. military strategy. Since rice was a staple for the Viet Cong, destroying rice paddies was a primary goal. At first, attempts were made to blow up rice stocks and destroy paddies with hand grenades and mortars, but this proved to be maddeningly difficult. The next idea was to burn the rice paddies with thermite grenades. All this did was scatter the rice grains, which could then still be harvested. Another approach was needed.

Enter “Agent Blue,” an arsenic-based herbicide, unrelated chemically to the more infamous Agent Orange. Agent Blue affects plants by causing them to dry out, and as rice is highly dependent on water, spraying Agent Blue on rice paddies can destroy an entire field and leave it unsuitable for further planting. The U.S. used some 20 million gallons of Agent Blue during the Vietnam war, destroying thousands of acres of agricultural fields and defoliating wooded areas that the Viet Cong used to ambush American troops.

Recently, the thermite reaction made the news in a different context. Conspiracy theorists purport that it was thermite explosives planted inside the World Trade Center that brought down the twin towers in a CIA coordinated plot. They also maintain that the moon landing was faked and that the U.S. government is hiding the bodies of aliens. Some also claim that the rise of Donald Trump was engineered by a Democratic conspiracy and that on the verge of being elected he will announce “fooled you.” Wouldn’t that be something? It would trump the thermite reaction for heat generated.

Read more

Forget Homeopathic Arsenic for Stress Reduction

stressDuring a recent talk on the relation between the body and the mind, I mentioned the newest anxiety-relieving craze, colouring books. Aimed at adults, these feature intricate patterns that provide quite a challenge for staying inside the lines. The contention is that focusing on the special patterns distracts the mind from anxiety and stress. Evidence is sketchy, but millions of colouring books are flying off the shelves, topping best-seller lists. That in itself says something about our society.

After my talk I was approached by a lady who claimed she had something better than colouring books to relieve anxiety and slipped a vial full of pills into my hand. She didn’t seem like a clandestine drug pusher so I thought I would look down and find some pills of lorezapam or maybe St. John’s Wort. Such was not the case. The label on the vial read “Arsenicum album 30C.”

No, she was not trying to poison me. These were homeopathic arsenic pills based on the curious notion that a substance that in large doses causes certain symptoms can, in homeopathic potency, repel the same symptoms. Since arsenic poisoning is associated with anxiety and restlessness, a person suffering such symptoms should find relief in a homeopathic dose of arsenic. In the bizarre world of homeopathy, potency increases with greater dilution, and a dose of 30C is said to be extremely potent. Such a pill is made by sequentially diluting a solution of arsenic a hundred fold thirty times and then impregnating a sugar pill with a drop of the final solution. At a dilution of 30C, not only is there no trace of arsenic left, there isn’t even a water molecule that has ever encountered any of the original arsenic.

Homeopathy is a scientifically bankrupt practice that was invented over two hundred years ago by German physician Samuel Hahnemann who was disenchanted with bloodletting and purging, common medical procedures at the time. He was a good man who searched for kinder and gentler treatments and homeopathy fit that rubric. Since knowledge of molecules was almost non-existent at the time, Hahnemann could not have realized that his diluted solutions contained nothing. Actually, the truth is that they did contain something. A hefty dose of placebo!

Now here is the kicker to this story. Hahnemann was quite accomplished in chemistry and actually developed the first chemical test for arsenic. In 1787 he found that arsenic in an unknown sample was converted to an insoluble yellow precipitate of arsenic trisulfide on treatment with hydrogen sulfide gas. When in 1832 John Bodle in England was accused of poisoning his grandfather by putting arsenic in his coffee, John Marsh, a chemist at the Royal Arsenal, was asked to test a sample of the coffee. While he was able to detect arsenic in the coffee using Hahnemann’s test, the experiment could not be reproduced to the satisfaction of the jury and Bodle was acquitted. Knowing that he could not be tried for the same crime again, he later admitted to killing his grandfather.

The confession infuriated Marsh and motivated him to develop a better test for arsenic. By 1836 he had discovered that treating a sample of body fluid or tissue with zinc and an acid converted any arsenic to arsine gas, AsH3, which could then be passed through a flame to yield metallic arsenic and water. The arsenic would then form a silvery-black deposit on a cold ceramic bowl held in the jet of the flame and the amount of arsenic in the original sample could be determined by comparing the intensity of the deposit with that produced with known amounts of arsenic.

The Marsh test received a great deal of publicity in 1840 when Marie LaFarge in France was accused of murdering her husband by putting arsenic into his food. Marie was known to have bought arsenic from a local chemist which she claimed was to kill rats that had infested the house. A maid swore that she has seen her mistress pour a white powder into her husband’s drink and Marie had also sent a cake to her husband who was travelling on business just prior to his becoming ill. The dead husband’s family suspected that Marie had poisoned him and somehow got hold of remnants of food to which she had supposedly added arsenic. The Marsh test revealed the presence of arsenic in the food and in a sample of egg nog, but when the victim’s body was exhumed the investigating chemist was unable to detect arsenic.

To help prove Marie’s innocence by corroborating the results of the investigation of the exhumed body, the defense enlisted Mathieu Orfila, a chemist acknowledged to be an authority on the Marsh test. Much to the defense’s chagrin, Orfila showed that the test had been carried out incorrectly and used the Marsh test to conclusively prove the presence of arsenic in LaFarge’s exhumed body. Marie was found guilty and sentenced to life in prison. The controversial case captured the imagination of the public and was closely followed through newspaper accounts making Marie LeFarge into a celebrity. It would also go down in the annals of history as the first case in which a conviction was secured based on direct forensic toxicological evidence. Because of Mathieu Orfila’s role in the case, he is often deemed to be the “founder of the science of toxicology.” The Marsh test became the subject of everyday conversations and even became a popular demonstration at fairgrounds and in public lectures. This had an interesting spin off. Poisonings by arsenic decreased significantly since the existence of a proven, reliable test served as a deterrent.

As far as claims about relieving anxiety with homeopathic arsenic go, well, they cause me anxiety. I think I’ll flush those homeopathic tablets down the drain (no worry about arsenic pollution here) and buy a colouring book.

Read more

Serious Nonsense

cancer wellness program“We’ve had more people reverse cancer than any institute in the history of health care, so when McGill fails, or Toronto hospitals fail, they come to us. It can be stage 4 cancer and we reverse it.” You can imagine why that quote caught my eye. Both McGill and University of Toronto have world-class cancer treatment centers, but unfortunately, when it comes to stage 4 cancers, which are the most deadly, the chance of successful treatment is low. So, who is it that claims success where the latest evidence-based treatments fail? “Dr.” Brian Clement, who runs the Hippocrates Health Institute in Florida, apparently has the answers that have evaded mainstream researchers. What sort of doctor is this fellow? One who has some sort of accreditation as a “nutritionist” from a diploma mill where they apparently teach some, let us say, “interesting” science. I’m judging by the following rather fascinating outpouring of nonsense-bedecked drivel from the Hippocrates Health Institute.

“Based on modern biophysics and ancient Chinese medicine, color frequencies are applied to acupuncture points using a light pen and crystal rods. This promotes hormonal balance, detoxification, lymph flow and immune support while reducing headaches and sleeplessness. Working on cellular memory where the cause of disease resides, color puncture promotes healing from within.” And all you have to do is shell out $120 for a 50 minute treatment. All this of course is laughable, but when it comes to claims about curing cancer, the humour quickly vanishes with the realization that it is real people with real cancer who are being duped. And going by the following asinine promo, that is just what is happening.

“One of the major treatment goals of The Cancer Wellness Program at Hippocrates Health Institute is to strengthen the basic vitality, flow, and coherency of a person’s BioEnergy Field upstream to affect and change their downstream physical mass. The changes in a person’s vibrational frequency or bioenergy field, once stabilized, changes the electrical/chemical milieu in their body so that it is more difficult for their cancer or tumor mass with its own specific vibrational frequency to be sustained.”.

This is inane claptrap is far from the only type of cancer treatment Hippocrates offers. Intravenous vitamins and wheat grass implants are standard fare. Implanted where? Well, let’s just say in areas where the sun doesn’t shine. Clement maintains that “every disease known to man, plus premature aging, can be successfully dealt with on a diet of organic plant based foods.” Apparently not mental disease, given that Clement surely follows this diet. Patients are also told to give up meat and dairy, and are asked to swallow some rather bizarre ideas. Genetics don’t matter much, Clement says, and what doctors say about the BRCA gene predisposing to breast cancer is false. On his regimen, this mental wizard claims, tens of thousands of people have reversed the final stages of cancer. I would love to see the evidence for that. This charlatan is in Canada right now, giving talks, mostly to entice First Nations people to visit his Institute in Florida for treatment. Just like that given to the unfortunate 11-year-old Ontario girl who suffered from leukemia. That had a very sad outcome. Let’s just say she was not one of the tens of thousands of patients that Clement claims to have successfully treated.

Read more

A Holistic Nutritional Rockstar’s Rocky Science

margarineSometimes you can evaluate a person’s scientific acumen by a single comment they utter. This is the case with Catherine Sugrue who labels herself a “holistic nutritionist rockstar.” Of course suspicion about her knowledge is immediately raised when we learn that it was gained at the “Institute of Holistic Nutrition,” which isn’t exactly Harvard. But the giveaway of the rockstar’s untrustworthiness is her reiteration of the absurd statement that “margarine is about one molecule away from plastic.” This isn’t about coming to the rescue of margarine. I don’t like it and I don’t eat it. I much prefer butter. But I am piqued by the shoddy pseudo scientific exhortations of self-proclaimed experts. In this case I’m further annoyed that this particular pseudoexpert was interviewed for an article about fats that appeared not in the National Enquirer, but in the National Post. When there are Canadians like Yoni Freedhoff, Chris Labos and Tim Caulfield who actually are experts when it comes to nutritional issues and would never confuse the public with ludicrous analogies between margarine and plastic.

Margarine being “one molecule away from plastic” is just plain nonsense. Plastics are composed polymers while margarine is a blend of fats and water. There is no chemical similarity between the two. In any case, being “one molecule away” is a totally meaningless expression. Substances are made of molecules, which in turn are composed of atoms joined together is a specific pattern. I suppose one might say that hydrogen peroxide, H2O2, is one atom away from water, H2O, but even this is meaningless. That extra oxygen atom changes the properties of the substance dramatically. Sticking a finger into a bottle of pure hydrogen peroxide quickly reveals the effect of that extra oxygen.

So, even if margarine had some chemical similarity to plastic, which it does not, its properties could still be dramatically different. Slight alterations in molecular structure can account for very significant changes in properties.

It is true that saturated fats have been vilified beyond the scientific evidence but the pendulum is swinging too far in the other direction. Kourtney Kardashian attributing her 5 pound weight loss to drinking clarified butter every morning is without scientific merit. Catherine Sugrue correctly warns that “getting your nutritional advice from celebrities is a dangerous game.” But so is getting it from a self-proclaimed “holistic nutritional rockstar” who is a graduate of an institution where you can take continuing education courses in “energy medicine,” “clinical detoxification,” and “applied iridology.”

Read more

Triacetone triperoxide

nail polish removerWe have become familiar with the routine at airports. Your carry-on bags are passed through an x-ray machine after which an officer will often wipe your bag with a piece of fabric which is then placed inside a box-like instrument. Within a few seconds you get the all-clear signal and you are on your way to the gate. How many travelers get handcuffs instead of an all-clear isn’t known because those stats are not released. What do these instruments actually do? When luggage is bombarded with x-rays, some of the rays pass through and some do not, depending on what they encounter. The more dense a material is, the less transparent it is to x-rays. Lead, for example, prevents any x-rays from passing through. To put it simply, the intensity of the x-rays that have passed through the luggage is a measure of the density of the substances contained in the luggage. Different substances will have unique densities and the densities of various explosives have been determined. The x-ray machine then compares the densities detected by the passage of x-rays to the predetermined densities of a host of suspect substances.

The instrument that analyzes the swabs is an “ion mobility spectrometer.” When the swab is inserted, a gust of a carrier gas dislodges some of the molecules that have been collected from the luggage. These molecules are then subjected to bombardment by electrons, commonly from a Nickel-63 isotope source. The bombardment creates ions that are swept through a tube where they are subjected to an electric field resulting in a separation by mass, size and shape of the molecules. These ions are detected and compared with those produced by known samples.

The technology is extremely sensitive and can detect trace amounts of explosives. It is not dependent on having nitrogen in the sample, an element found in almost all explosives except in triacetone triperoxide (TATP). This is what was used in the Belgian and London bombings. TATP is often the choice of terrorists because it is easy to manufacture from acetone, hydrogen peroxide and an acid, all of which are readily available. Of course an explosive in luggage can only be detected if the luggage is inspected. But in the case of the Belgian airport bombing, the explosive was set off in the pre-screening area. To try to counter this, hand held detectors have been developed for use by officers who patrol all areas. When gaseous TATP molecules enter this sensor, they encounter an acid catalyst that converts TATP back into its constituent parts, acetone and hydrogen peroxide. The peroxide then reacts with dyes in the instrument causing them to change colour. By detecting these colour changes, the highly sensitive portable scanner can detect fewer than two parts per billion of TATP. But unfortunately no matter how clever the detector chemistry, it can’t foil all terrorists’ attempts.

Read more

« Older Entries
Blog authors are solely responsible for the content of the blogs listed in the directory. Neither the content of these blogs, nor the links to other web sites, are screened, approved, reviewed or endorsed by McGill University. The text and other material on these blogs are the opinion of the specific author and are not statements of advice, opinion, or information of McGill.