MCQLL Meeting, 10/23 – Kushal Arora

At the meeting of MCQLL this week, Kushal Arora will present his recent work with Aishik Chakraborty.

Title: Learning Lexical Subspaces in a Distributional Vector Space

Abstract: In this paper, we propose LexSub, a novel approach towards unifying lexical and distributional semantics. We inject knowledge about lexical-semantic relations into distributional word embeddings by defining subspaces of the distributional vector space in which a lexical relation should hold. Our framework can handle symmetric attract and repel relations (e.g., synonymy and antonymy, respectively), as well as asymmetric relations (e.g., hypernymy and meronomy). In a suite of intrinsic benchmarks, we show that our model outperforms previous post-hoc approaches on relatedness tasks, and on hypernymy classification and detection while being competitive on word similarity tasks. It also outperforms previous systems on extrinsic classification tasks that benefit from exploiting lexical relational cues. We perform a series of analyses to understand the behaviors of our model.

This meeting will be held in room 117 at 14:30 on Wednesday.

Comments are closed.

Blog authors are solely responsible for the content of the blogs listed in the directory. Neither the content of these blogs, nor the links to other web sites, are screened, approved, reviewed or endorsed by McGill University. The text and other material on these blogs are the opinion of the specific author and are not statements of advice, opinion, or information of McGill.