MCQLL Meeting, 1/15 — Alessandro Sordoni

MCQLL meets on Wednesdays at 1:00 in room 117. This week, Alessandro Sordoni will be discussing Natural Language Inference datasets such as MNLI, or paraphrase corpora such as QQP. NLU models trained on those datasets become usually brittle when they are tested on examples that are still grammatically correct but slightly out-of-distribution (see HANS and PAWS datasets). This talk presents preliminary results on how one can train state-of-the-art natural language understanding models on MNLI and QQP such that the resulting model is more robust when tested on OOD data. A useful starting point is this paper: https://arxiv.org/abs/1902.01007

Comments are closed.

Blog authors are solely responsible for the content of the blogs listed in the directory. Neither the content of these blogs, nor the links to other web sites, are screened, approved, reviewed or endorsed by McGill University. The text and other material on these blogs are the opinion of the specific author and are not statements of advice, opinion, or information of McGill.